Inhibition of poly(ADP-ribose) polymerase-1 or poly(ADP-ribose) glycohydrolase individually, but not in combination, leads to improved chemotherapeutic efficacy in HeLa cells

نویسندگان

  • XIAOXING FENG
  • DAVID W. KOH
چکیده

The genome-protecting role of poly(ADP-ribose) (PAR) has identified PAR polymerase-1 (PARP-1) and PAR glycohydrolase (PARG), two enzymes responsible for the synthesis and hydrolysis of PAR, as chemotherapeutic targets. Each has been previously individually evaluated in chemotherapy, but the effects of combination PARP-1 and PARG inhibition in cancer cells are not known. Here we determined the effects of the inhibition of PARP-1 and the absence or RNAi knockdown of PARG on PAR synthesis, cell death after chemotherapy and long-term viability. Using three experimental/clinical PARP-1 inhibitors in PARG-null cells, we show decreased levels of PAR and increased short‑term and long‑term viability with each inhibitor, with the exception of DPQ. Treatment with the experimental chemotherapeutic agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), led to increased cell death in PARG-null cells, but decreased cell death when pretreated with each PARP-1 inhibitor. Similar results were observed in MNNG-treated HeLa cells, where RNAi knockdown of PARG or pretreatment with ABT-888 led to increased HeLa cell death, whereas combination PARG RNAi knockdown + ABT-888 failed to produce increased cell death. The results demonstrate the ability of the PARP-1 inhibitors to decrease PAR levels, maintain viability and decrease PAR-mediated cell death after chemotherapeutic treatment in the absence of PARG. Further, the results demonstrate that the combination of PARP-1 and PARG inhibition in chemotherapy does not produce increased HeLa cell death. Thus, the results indicate that inhibiting both PARP-1 and PARG, which both are chemotherapeutic targets that increase cancer cell death, does not lead to synergistic cell death in HeLa cells. Therefore, strategies that target PAR metabolism for the improved treatment of cancer may be required to target PARP-1 and PARG individually in order to optimize cancer cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of 1-methyl-1-nitrosourea on poly(adenosine diphosphate-ribose) polymerase activity at the nucleosomal level.

The stimulation of poly(adenosine diphosphate ribose) [poly(ADP-ribose)] polymerase activity at the nuclear level after damage of HeLa cells by 1-methyl-1-nitrosourea has been previously reported. We have observed a similar activation of the enzyme after treatment of cells with MNU at the nucleosomal level of chromatin (greater than 1N). This stimulation of enzyme activity did not occur through...

متن کامل

Inhibition of poly(ADP-ribose)polymerase causes increased DNA strand breaks without decreasing strand rejoining in alkylated HeLa cells.

Treatment of alkylated HeLa cells with 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase, increased the number of DNA strand breaks but did not affect the rate of strand rejoining. This suggests that an increase in DNA incision, not a decrease in ligation, results from the inhibition of poly(ADP-ribose) polymerase in cells recovering from DNA damaged by alkylating agents.

متن کامل

PARP1 gene expression is downregulated by knockdown of PARG gene

Poly(ADP-ribosyl)ation is a modification of nuclear proteins that regulates DNA replication, repair and transcription. In order to investigate the biological effects of degradation of poly(ADP-ribose), knockdown of the poly(ADP-ribose) glycohydrolase (PARG) gene was performed by introducing a short interfering RNA (siRNA)-pool into HeLa S3 cells. Notably, poly(ADP-ribosyl)ated proteins did not ...

متن کامل

Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase.

Single-strand breaks are the commonest lesions arising in cells, and defects in their repair are implicated in neurodegenerative disease. One of the earliest events during single-strand break repair (SSBR) is the rapid synthesis of poly(ADP-ribose) (PAR) by poly(ADP-ribose) polymerase (PARP), followed by its rapid degradation by poly(ADP-ribose) glycohydrolase (PARG). While the synthesis of pol...

متن کامل

Preferential degradation of protein-bound (ADP-ribose)n by nuclear poly(ADP-ribose) glycohydrolase from human placenta.

Poly(ADP-ribose) glycohydrolase, extensively purified to homogeneity from nuclei of human placenta, is composed of a single polypeptide with a molecular mass of 71,000 daltons on sodium dodecyl sulfate-polyacrylamide gel. Judging from its physico-chemical and catalytic properties, the enzyme is similar to the nuclear glycohydrolase (glycohydrolase I), but not to the cytoplasmic glycohydrolase (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2013